Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.

Identifieur interne : 000698 ( Main/Exploration ); précédent : 000697; suivant : 000699

Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.

Auteurs : Yatao Du [Suède] ; Huihui Zhang ; Xu Zhang ; Jun Lu ; Arne Holmgren

Source :

RBID : pubmed:24062305

Descripteurs français

English descriptors

Abstract

The mammalian cytosolic thioredoxin system, comprising thioredoxin (Trx), Trx reductase, and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. Besides the active site thiols, human Trx1 contains three non-active site cysteine residues at positions 62, 69, and 73. A two-disulfide form of Trx1, containing an active site disulfide between Cys-32 and Cys-35 and a non-active site disulfide between Cys-62 and Cys-69, is inactive either as a disulfide reductase or as a substrate for Trx reductase. This could possibly provide a structural switch affecting Trx1 function during oxidative stress and redox signaling. We found that two-disulfide Trx1 was generated in A549 cells under oxidative stress. In vitro data showed that two-disulfide Trx1 was generated from oxidation of Trx1 catalyzed by peroxiredoxin 1 in the presence of H2O2. The redox Western blot data indicated that the glutaredoxin system protected Trx1 in HeLa cells from oxidation caused by ebselen, a superfast oxidant for Trx1. Our results also showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced the non-active site disulfide in vitro. This reaction was stimulated by glutaredoxin 1 via the so-called monothiol mechanism. In conclusion, reversible oxidation of the non-active site disulfide of Trx1 is suggested to play an important role in redox regulation and cell signaling via temporal inhibition of its protein-disulfide reductase activity for the transmission of oxidative signals under oxidative stress.

DOI: 10.1074/jbc.M113.495150
PubMed: 24062305
PubMed Central: PMC3820862


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.</title>
<author>
<name sortKey="Du, Yatao" sort="Du, Yatao" uniqKey="Du Y" first="Yatao" last="Du">Yatao Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-17177 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Huihui" sort="Zhang, Huihui" uniqKey="Zhang H" first="Huihui" last="Zhang">Huihui Zhang</name>
</author>
<author>
<name sortKey="Zhang, Xu" sort="Zhang, Xu" uniqKey="Zhang X" first="Xu" last="Zhang">Xu Zhang</name>
</author>
<author>
<name sortKey="Lu, Jun" sort="Lu, Jun" uniqKey="Lu J" first="Jun" last="Lu">Jun Lu</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24062305</idno>
<idno type="pmid">24062305</idno>
<idno type="doi">10.1074/jbc.M113.495150</idno>
<idno type="pmc">PMC3820862</idno>
<idno type="wicri:Area/Main/Corpus">000702</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000702</idno>
<idno type="wicri:Area/Main/Curation">000702</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000702</idno>
<idno type="wicri:Area/Main/Exploration">000702</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.</title>
<author>
<name sortKey="Du, Yatao" sort="Du, Yatao" uniqKey="Du Y" first="Yatao" last="Du">Yatao Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-17177 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Huihui" sort="Zhang, Huihui" uniqKey="Zhang H" first="Huihui" last="Zhang">Huihui Zhang</name>
</author>
<author>
<name sortKey="Zhang, Xu" sort="Zhang, Xu" uniqKey="Zhang X" first="Xu" last="Zhang">Xu Zhang</name>
</author>
<author>
<name sortKey="Lu, Jun" sort="Lu, Jun" uniqKey="Lu J" first="Jun" last="Lu">Jun Lu</name>
</author>
<author>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Reductase (genetics)</term>
<term>Glutathione Reductase (metabolism)</term>
<term>HeLa Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Hydrogen Peroxide (pharmacology)</term>
<term>NADP (genetics)</term>
<term>NADP (metabolism)</term>
<term>Oxidants (pharmacology)</term>
<term>Oxidation-Reduction (drug effects)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Oxidative Stress (physiology)</term>
<term>Peroxiredoxins (genetics)</term>
<term>Peroxiredoxins (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (physiology)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules HeLa (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione reductase (génétique)</term>
<term>Glutathione reductase (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>NADP (génétique)</term>
<term>NADP (métabolisme)</term>
<term>Oxydants (pharmacologie)</term>
<term>Oxydoréduction (effets des médicaments et des substances chimiques)</term>
<term>Peroxirédoxines (génétique)</term>
<term>Peroxirédoxines (métabolisme)</term>
<term>Peroxyde d'hydrogène (pharmacologie)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Stress oxydatif (physiologie)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Reductase</term>
<term>NADP</term>
<term>Peroxiredoxins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Glutathione Reductase</term>
<term>NADP</term>
<term>Peroxiredoxins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Hydrogen Peroxide</term>
<term>Oxidants</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Oxydoréduction</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Glutathione reductase</term>
<term>NADP</term>
<term>Peroxirédoxines</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Glutathione reductase</term>
<term>NADP</term>
<term>Peroxirédoxines</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Oxydants</term>
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Oxidative Stress</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>HeLa Cells</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mammalian cytosolic thioredoxin system, comprising thioredoxin (Trx), Trx reductase, and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. Besides the active site thiols, human Trx1 contains three non-active site cysteine residues at positions 62, 69, and 73. A two-disulfide form of Trx1, containing an active site disulfide between Cys-32 and Cys-35 and a non-active site disulfide between Cys-62 and Cys-69, is inactive either as a disulfide reductase or as a substrate for Trx reductase. This could possibly provide a structural switch affecting Trx1 function during oxidative stress and redox signaling. We found that two-disulfide Trx1 was generated in A549 cells under oxidative stress. In vitro data showed that two-disulfide Trx1 was generated from oxidation of Trx1 catalyzed by peroxiredoxin 1 in the presence of H2O2. The redox Western blot data indicated that the glutaredoxin system protected Trx1 in HeLa cells from oxidation caused by ebselen, a superfast oxidant for Trx1. Our results also showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced the non-active site disulfide in vitro. This reaction was stimulated by glutaredoxin 1 via the so-called monothiol mechanism. In conclusion, reversible oxidation of the non-active site disulfide of Trx1 is suggested to play an important role in redox regulation and cell signaling via temporal inhibition of its protein-disulfide reductase activity for the transmission of oxidative signals under oxidative stress. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24062305</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>288</Volume>
<Issue>45</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.</ArticleTitle>
<Pagination>
<MedlinePgn>32241-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M113.495150</ELocationID>
<Abstract>
<AbstractText>The mammalian cytosolic thioredoxin system, comprising thioredoxin (Trx), Trx reductase, and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. Besides the active site thiols, human Trx1 contains three non-active site cysteine residues at positions 62, 69, and 73. A two-disulfide form of Trx1, containing an active site disulfide between Cys-32 and Cys-35 and a non-active site disulfide between Cys-62 and Cys-69, is inactive either as a disulfide reductase or as a substrate for Trx reductase. This could possibly provide a structural switch affecting Trx1 function during oxidative stress and redox signaling. We found that two-disulfide Trx1 was generated in A549 cells under oxidative stress. In vitro data showed that two-disulfide Trx1 was generated from oxidation of Trx1 catalyzed by peroxiredoxin 1 in the presence of H2O2. The redox Western blot data indicated that the glutaredoxin system protected Trx1 in HeLa cells from oxidation caused by ebselen, a superfast oxidant for Trx1. Our results also showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced the non-active site disulfide in vitro. This reaction was stimulated by glutaredoxin 1 via the so-called monothiol mechanism. In conclusion, reversible oxidation of the non-active site disulfide of Trx1 is suggested to play an important role in redox regulation and cell signaling via temporal inhibition of its protein-disulfide reductase activity for the transmission of oxidative signals under oxidative stress. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Yatao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Huihui</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xu</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>Arne</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516005">GLRX protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016877">Oxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="C515940">PRDX1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.7</RegistryNumber>
<NameOfSubstance UI="D005980">Glutathione Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005980" MajorTopicYN="N">Glutathione Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016877" MajorTopicYN="N">Oxidants</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Hydrogen Peroxide</Keyword>
<Keyword MajorTopicYN="N">Oxidative Stress</Keyword>
<Keyword MajorTopicYN="N">Peroxiredoxin</Keyword>
<Keyword MajorTopicYN="N">Redox Signaling</Keyword>
<Keyword MajorTopicYN="N">Thiol</Keyword>
<Keyword MajorTopicYN="N">Thioredoxin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24062305</ArticleId>
<ArticleId IdType="pii">M113.495150</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M113.495150</ArticleId>
<ArticleId IdType="pmc">PMC3820862</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2008 Aug 8;283(32):21890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Dec 10;40(5):787-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21145486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2005 Jun 15;38(12):1543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 22;283(34):23062-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2011;2:e213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21975295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2011 Sep 14;111(9):5768-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21793530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Nov 10;255(21):10261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7000775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:237-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3896121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Aug 2;166(3):337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15277542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 May 15;48(10):1370-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 29;278(35):33408-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12816947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7944-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1518818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Feb 19;140(4):517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2005 May;41(1):207-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15915565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Dec 18;555(3):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2004 Mar;78(1):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14691207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Sep;70(9):5159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jul 30;274(31):21645-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10419473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21375475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jun;5(6):553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1968 Dec 5;6(4):475-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4883076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1991;11(1):13-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1961698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Jul 10;252(13):4600-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 2;287(45):38210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jun 30;312(5782):1882-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2000 Winter;2(4):811-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11213485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Apr;39(4):3683-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21732058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;347:317-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11898422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Feb 10;287(7):4403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22147704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Oct 15;17(8):1124-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22531002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1996 Jun 15;4(6):735-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8805557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 May 1;17(9):2596-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9564042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1990 Aug 1;188(2):359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2221388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 25;300(5619):650-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12714747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 9;284(2):723-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2004 Jun 1;109(21):2581-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 May 21;396(1):120-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20494123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2010;474:67-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20609905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2003;235:209-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12904664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Feb 9;49(5):835-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20050630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2008 Apr;57(4):938-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Dec 15;29(24):4185-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21057456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Biochem Nutr. 2012 Jan;50(1):23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Aug 4;281(31):21884-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):25-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Jun 3;121(5):667-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15935753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Jan 18;290(2):624-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11785944</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Holmgren, Arne" sort="Holmgren, Arne" uniqKey="Holmgren A" first="Arne" last="Holmgren">Arne Holmgren</name>
<name sortKey="Lu, Jun" sort="Lu, Jun" uniqKey="Lu J" first="Jun" last="Lu">Jun Lu</name>
<name sortKey="Zhang, Huihui" sort="Zhang, Huihui" uniqKey="Zhang H" first="Huihui" last="Zhang">Huihui Zhang</name>
<name sortKey="Zhang, Xu" sort="Zhang, Xu" uniqKey="Zhang X" first="Xu" last="Zhang">Xu Zhang</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Du, Yatao" sort="Du, Yatao" uniqKey="Du Y" first="Yatao" last="Du">Yatao Du</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000698 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000698 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24062305
   |texte=   Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24062305" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020